Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.
نویسندگان
چکیده
In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.
منابع مشابه
An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis
Metabolic disease is a leading cause of death worldwide, and obesity, a central risk factor, is reaching epidemic proportions. Energy expenditure and brown adipose tissue (BAT) thermogenesis are implicated in metabolic disease, and it is becoming evident that impaired BAT activity is regulated by gene/environment interactions. Peroxisome proliferator-activated receptor γ coactivator 1α (Pgc-1α)...
متن کاملInhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α
Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene exp...
متن کاملRegulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.
Mechanisms responsible for energy management in the cell and in the whole organism require a complex network of transcription factors and cofactors. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has emerged as a master regulator of mitochondrial biogenesis and function, thus becoming a crucial metabolic node. We present an overview of the mechanisms by which PGC-1α is reg...
متن کاملTranscriptional Activity of PGC-1α and NT-PGC-1α Is Differentially Regulated by Twist-1 in Brown Fat Metabolism
Brown fat expresses two PGC-1α isoforms (PGC-1α and NT-PGC-1α) and both play a central role in the regulation of cellular energy metabolism and adaptive thermogenesis by interacting with a wide range of transcription factors including PPARγ, PPARα, ERRα, and NRF1. PGC-1α consists of 797 amino acids, whereas alternative splicing of the PGC-1α gene produces a shorter protein called NT-PGC-1α (aa ...
متن کاملPGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice
Increasing evidences have accumulated that endothelial dysfunction is involved in the pathogenesis of hypertension. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) has been identified as an essential factor that protects against endothelial dysfunction in vascular pathologies. However, the functional role of PGC-1α in hypertension is not well understood. Using an ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 42 شماره
صفحات -
تاریخ انتشار 2015